>首頁>成績計算>各科等級示例>數學科

數學科

精熟:能作數學概念間的連結,建立恰當的數學方法或模式解題,並能論證。

基礎:理解基本的數學概念、能操作算則或程序,並應用所學解題。

待加強:認識基本的數學概念,僅能操作簡易算則或程序。

〔例1〕

如圖(八),銳角三角形ABC中,BC>AB>AC ,甲、乙兩人想找一點P, 使得∠BPC∠A互補,其作法分別如下:

圖(八)

(甲)以A為圓心,AC長為半徑畫弧交ABP點,則P即為所求
(乙)作過B點且與AB垂直的直線L,作過C點且與AC垂直的直線,交LP點,則P即為所求

對於甲、乙兩人的作法,下列敘述何者正確?

(A)兩人皆正確
(B)兩人皆錯誤
(C)甲正確,乙錯誤
(D)甲錯誤,乙正確*

<試題出處>教育會考107-18
<命題依據>S-4-19能針對問題,利用幾何或代數性質做簡單證明。
<示例說明>

  1. 此題評量學生是否能應用幾何性質判斷作圖方法的合理性。學生作答此題時必須連結外角定理、等腰三角形與多邊形內角和的性質,推論作法是否合理。此能力表現符合「精熟」等級能作數學概念間的連結,並能論證的描述。
  2. 答對此類型試題的學生,其能力被歸類為「精熟」等級的機率較高。

〔例2〕

圖(二)

圖(二)為大興電器行的促銷活動傳單,已知促銷第一天美食牌微波爐賣出10台,且其銷售額為61000元。若活動期間此款微波爐總共賣出50台,則其總銷售額為多少元?

(A)305000
(B)321000
(C)329000*
(D)342000

<試題出處>教育會考107-10
<命題依據>A-4-07能熟練一元一次方程式的解法,並用來解題。
<示例說明>

  1. 此題評量學生是否能在情境中應用一元一次方程式解題。學生作答此題時必須理解情境中的數量關係,依題意列出方程式並求解,再由方程式的解得出微波爐的總銷售額。此能力表現符合「基礎」等級理解基本的數學概念,並應用所學解題的描述。
  2. 答對此類型試題的學生,其能力被歸類為「基礎」等級以上的機率較高。

〔例3〕

已知 $\displaystyle\ a=({3\over 14}-{2 \over 15})-{1 \over 16}\;$ ,$\displaystyle\ b={3\over 14}-({2 \over 15}-{1 \over 16})\;$,$\displaystyle\ c={3\over 14}-{2 \over 15}-{1 \over 16}\;$,判斷下列敘述何者正確?

(A)a=c,b=c
(B)a=c,b≠c *
(C)a≠c,b=c
(D)a≠c,b≠c

<試題出處>教育會考107-2
<命題依據>N-4-08 能熟練正負數的四則混合運算。
<示例說明>

  1. 此題評量學生是否能理解四則運算中負數去括號的規則。
  2. 答錯此類型試題的學生,其能力被歸類為「待加強」等級的機率較高。

國中教育會考數學科非選擇題試題(樣卷公布)